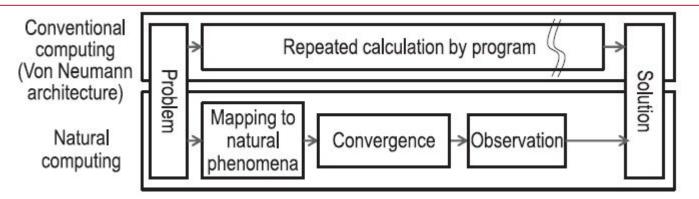


Quantum Integer Programming

47-779

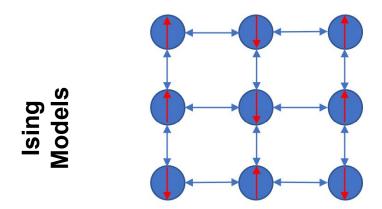
Novel Ising Solvers

Carnegie Mellon University Tepper School of Business William Larimer Mellon, Founder

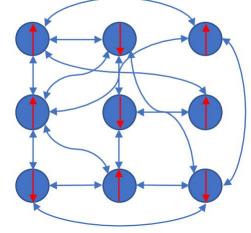

- Conventional vs. Natural Computing
- Solving the 2D regular Ising Problem
 - Graphic Processing Units
 - Tensor Processing Units
 - Field-programmable gate arrays
- Solving general Ising models
 - Graphic Processing Units
 - Simulated Bifurcation Machine
 - CMOS
 - Digital Annealers

Carnegie Mellon University

Tepper School of Business



Conventional (Von Neumann) vs. Natural Computing



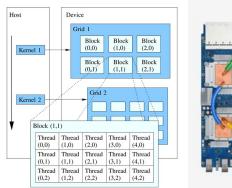
2D Ising model - Simple yet interesting

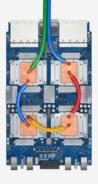
Main concern: How to parallelize

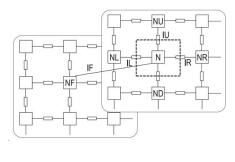
Arbitrary Ising - Applicable but hard!

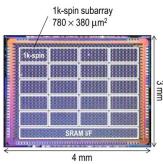
Main concern: How to actually solve

Monte Carlo Simulations [1] A 20k-Spin Ising Chip to Solve Combinatorial Optimization Problems With CMOS Annealing. Yamaoka, Yoshimura, Hayashi, Okuyama, Aoki, and Carnegie Mellon University


Tepper School of Business


[2] https://arxiv.org/pdf/1807.10750.pdf

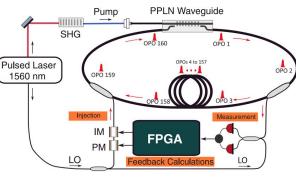

Specialized Hardware for Ising/QUBO


GPUs and TPUs

Complementary metal-oxide semiconductors (CMOS)

Digital annealers

Carnegie Mellon University Tepper School of Business

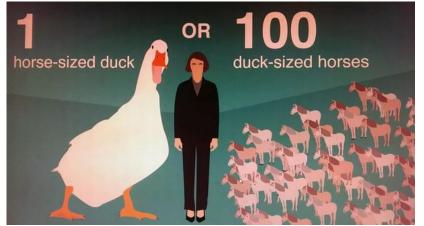

[1]https://arxiv.org/pdf/1807.10750.pc [2]https://arxiv.org/pdf/1903.11714.pc [3]https://arxiv.org/pdf/1806.08815.pc [4]https://spectrum.ieee.org/tech-talk

mos-digital-annealer-produces-quantum-computer-speeds

[5]https://science.sciencemag.org/content/sci/354/6312/614.full.pdf

William Larimer Mellon, Founder

Oscillator Based Computing


Fiber beamsplitter

Graphical Processing Units (GPU)

CPU vs GPU

CPU	GPU
Central Processing Unit	Graphics Processing Unit
Several cores	Many cores
Low latency	High throughput
Good for serial processing	Good for parallel processing
Can do a handful of operations at once	Can do thousands of operations at once

3.

The Difference between a CPU and GPU

CPU	GPU

Specialized, electronic circuit designed to rapidly manipulate and alter memory to accelerate the creation of images.... Their highly parallel structure makes them more efficient than general-purpose central processing units (CPUs) for algorithms that process large blocks of data in parallel.

Carnegie Mellon University Tepper School of Business

1. https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/ 2.

https://www.guora.com/Would-you-rather-fight-100-duck-sized-horses-or-one-horse-sized-duck

https://en.wikipedia.org/wiki/Graphics processing unit

Graphical Processing Units

Algorithm 1 Modified Ising annealing algorithm

- 1: input: (M, N, \mathbf{S})
- 2: initialize all σ_i in S
- 3: for sweep-id in $\{1, 2, ..., M\}$ do
- 4: for σ_i in S do

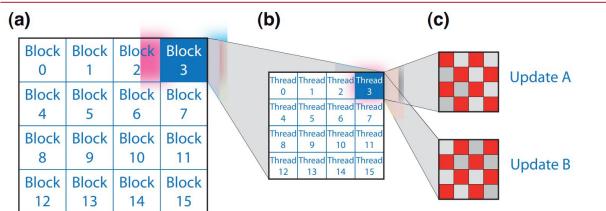
5:
$$\sigma_i \leftarrow \operatorname{argmin}(H(\sigma_i))$$
 based on $\mathcal{H}_i(\sigma_i) = \left(-\sum J_{i,j}\sigma_j - h_i\right)\sigma_i$

- 6: end for
- 7: randomly choose and flip N spin glasses in **S**
- 8: decrease N
- 9: end for

Algorithm 2 GPU Simulated Annealing method for Ising model

input: (F_p, \mathbf{S}) initialize ALL σ_i in \mathbf{S} while $F_p > 0$ do for all $\sigma_i \in \mathbf{S}$ in parallel do $\sigma_i \leftarrow \operatorname{argmin}(H(\sigma_i))$ flip σ_i with probability F_p end for reduce F_p

1. https://arxiv.org/pdf/1807.10750.pdf William Larimer Mellon, Founder


Device Grid 1 Block Block Block (0,0)(2,0)(1,0)Kernel 1 Block Block. Block (0,1)(1,1)(2,1)Grid 2 Kernel 2 Block (1,1) Thread Thread Thread Thread Thread (1,0)(2,0)(3,0)(4,0)(0.0)Thread Thread Thread Thread Thread (0,1)(1,1)(2,1)(3,1)(4,1)Thread Thread Thread Thread Thread (0,2)(1,2)(2,2)(3,2)(4,2)

6

Tepper School of Business

GPU for 2D Ising Models

Encode spins into threads and classify +1 and -1 in separate buckets

Figure 1: (Color online) The spin lattice is processed by a variable number of blocks (a), where each block runs a variable number of threads (b). The threads update the spin lattice in two steps, *A* and *B*, using two kernel invocations (c).

Perform the Ising Update via easily parallelizable operations.

	Spinflips per μ s	Relative speed	
CPU simple	26.6	0.11	
CPU multi-spin coding	226.7	1.00	
shared memory	4415.8	19.50	
shared memory (Fermi)	8038.2	35.46	
multi-spin unmodified	3307.2	14.60	
multi-spin coding on the fly	5175.8	22.80	
multi-spin coding linear	7977.4	35.20	

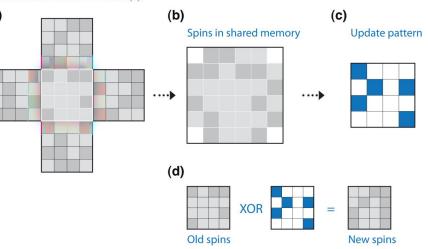
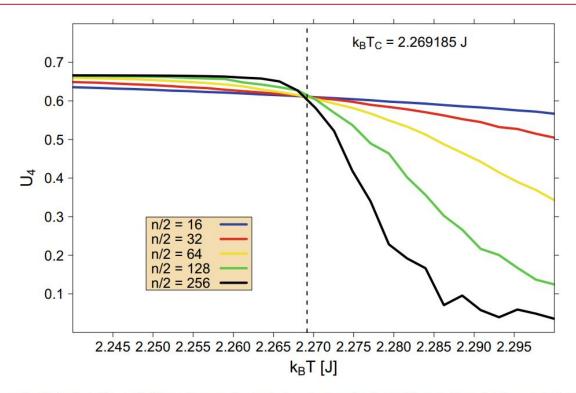


Figure 2: (Color online) (a) The way a kernel processes a 4×4 meta-spin. (b) Spins are extracted into shared memory and an update pattern is created (c). (d) Afterwards, the new spins are obtained using the update pattern (Spins on blue sites will be flipped), and written back to global memory.

1. https://arxiv.org/pdf/1007.3726.pdf

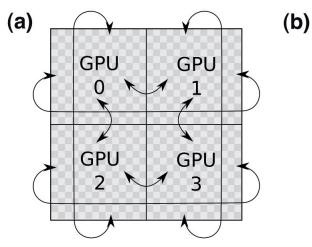

William Larimer Mellon, Founder

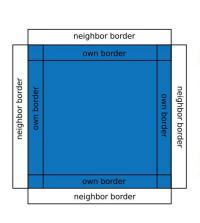
Carnegie Mellon University Tepper School of Business

Correctness of GPU's results

Fig. 5. Binder cumulant U_4 in dependence of k_BT for various numbers *n* of spins per row and column of the two dimensional square lattice Ising model. n/2 corresponds to the involved number of threads per block on the GPU implementation. The curves of the Binder cumulants for various system sizes $N = n^2$ cross almost perfectly at the critical temperature derived by Onsager [3], which is shown additionally as a dashed line. In each temperature step, the average was taken over 10^7 measurements.

It (sort of) matches Onsager analytical prediction!


Carnegie Mellon University Tepper School of Business


1. https://arxiv.org/pdf/1007.3726.pdf William Larimer Mellon, Founder

Parallelizing GPUs

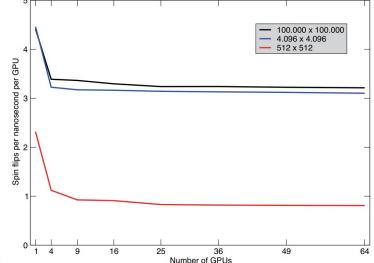


Figure 4: (Color online) (a) Each GPU processes a "meta-spin" lattice of size $N = n^2$. The lattices are aligned on a super-lattice, and the outer borders are connected via periodic boundary conditions. In this example, 4 GPUs process a system of $2^2 \cdot N$ spins. (b) A meta-spin update needs the 4 nearest neighbor meta-spins. On the borders of a lattice, each GPU needs the spin information of the neighboring lattices. The border information has to be passed between the GPUs. In our implementation this is done by using 8 neighbor arrays.

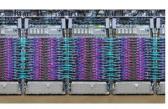
Figure 5: (Color online) Cluster performance for various system sizes (per GPU). For more than one GPU, spin flip performance scall linearly with the amount of GPUs. Again, optimal performance is reached at a lattice size of about 4096 × 4096 per GPU. Using 64 performance of 206 spinflips per nanoscenod can be achieved on a 800.000 × 800.000 lattice.

Using 64 GPUs performance of 206 spinflips per **nanosecond** can be achieved on a 800,000x800,000 lattice

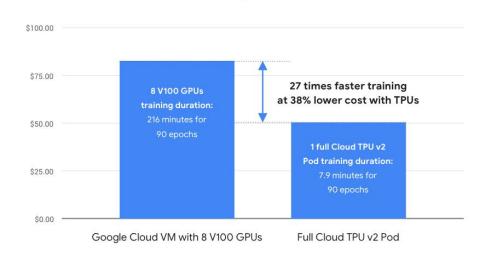
Carnegie Mellon University Tepper School of Business

1. https://arxiv.org/pdf/1007.3726.pdf William Larimer Mellon, Founder

Tensor Processing Units (TPU)


Cloud TPU v2 180 teraflops 64 GB High Bandwidth Memory (HBM)

Cloud TPU v3 420 teraflops 128 GB HBM



Cloud TPU v2 Pod 11.5 petaflops 4 TB HBM 2-D toroidal mesh network

Cloud TPU v3 Pod 100+ petaflops 32 TB HBM 2-D toroidal mesh network

Machine learning performance and benchmarks

ResNet-50 Training Cost Comparison

Tensor Processing Unit (**TPU**) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google specifically for neural network machine learning, particularly using Google's own TensorFlow software.

- **Carnegie Mellon University** Tepper School of Business
- 1. <u>https://en.wikipedia.org/wiki/Tensor_Processing_Unit#/media/File:Tensor_</u> Processing_Unit_3.0.jpg
- 2. https://cloud.google.com/tpu

TPU for 2D Ising

Checkerboard Algorithm: break lattice in sublattices and group equal spins to easily operate on them

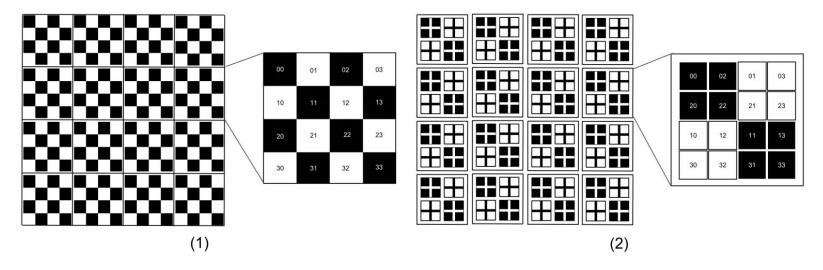
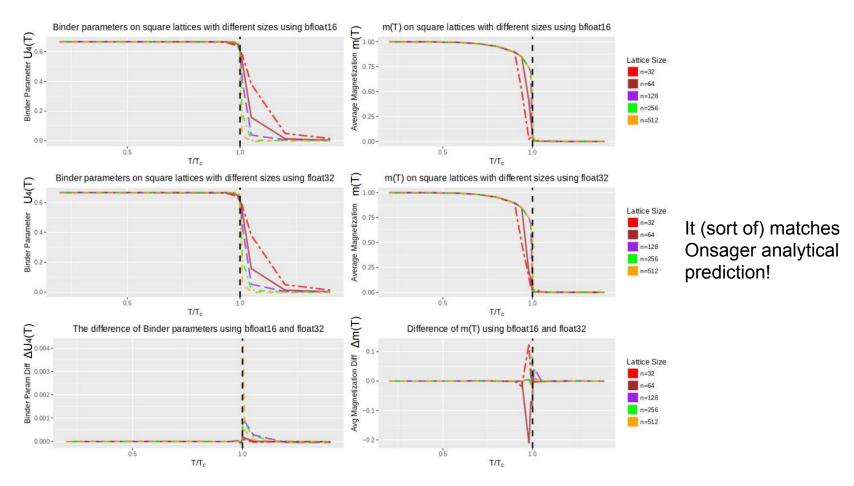


Figure 3: A 2-d checkerboard: (1) Original checkerboard: on the left, the 16×16 board is split into a 4×4 grid of 4×4 sub-lattices, i.e., it is represented by a [4, 4, 4, 4] tensor, where [l, k, :, :] is the sub-lattice at [l, k] of the grid; on the right, the sub-lattice is zoomed in and the indices of its spin sites are shown; (2) Reorganized checkerboard: one the left, each 4×4 sub-lattice is reorganized by 4 "compact" 2×2 sub-lattices; on the right, 4 "compact" 2×2 sub-lattices are zoomed in and their original indices from the 4×4 sub-lattice are shown. In general, such alternate coloring of black and white can be extended to lattices with any dimensions.


Carnegie Mellon University

Tepper School of Business

1. https://arxiv.org/pdf/1903.11714.pdf

Correctness of TPU's results

1. https://arxiv.org/pdf/1903.11714.pdf

Carnegie Mellon University Tepper School of Business

Efficiency of TPU cluster

lattice size n^2	(flips/ns)	(nJ/flip)]			
$(20 \times 128)^2$	8.1920	12.2070]			
$(40 \times 128)^2$	9.3623	10.6811	13.0 12.5 12.0	-	-	
$(80 \times 128)^2$	12.3362	8.1062	v 12.0			
$(160 \times 128)^2$	12.8266	7.7963	511.0			
$(320 \times 128)^2$	12.9056	7.7486	SU 11.0 SU 11.0 JU 10.0 JU 9.5 9.0			
$(640 \times 128)^2$	12.8783	7.7650	8.0			
GPU in [23, 3]	7.9774	<u></u>	28	-28	- 28	
Nvidia Tesla V100	11.3704	21.9869	20×128 40×128 80×128	160×128	320x128	640x128
FPGA in [20]	614.4	—	Ţ	-	lattice size	0

Better performance and less energy consumption than Nvidia GPUs, until... (next slide)

Really far from Field-programmable gate array (FPGA)! (a couple slides more)

Code available in Github and replicable results (with a Google Cloud account) <u>https://github.com/google-research/google-research/blob/master/simulation_research/ising_model/ising_mcmc_tpu.ipynb</u>

1. https://arxiv.org/pdf/1903.11714.pdf

Carnegie Mellon University Tepper School of Business

Nvidia's Rebuttal!

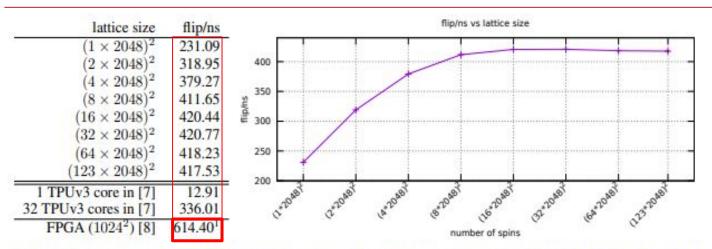
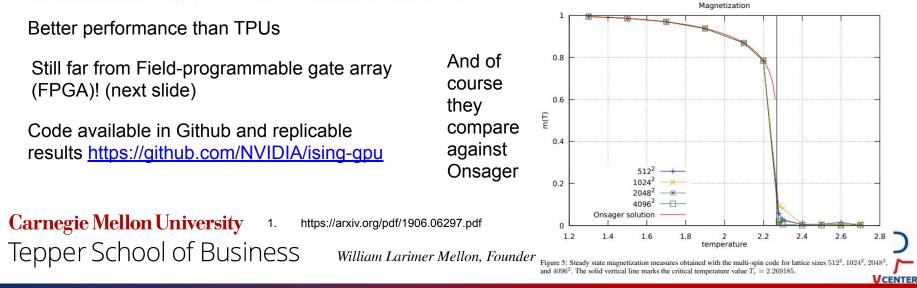
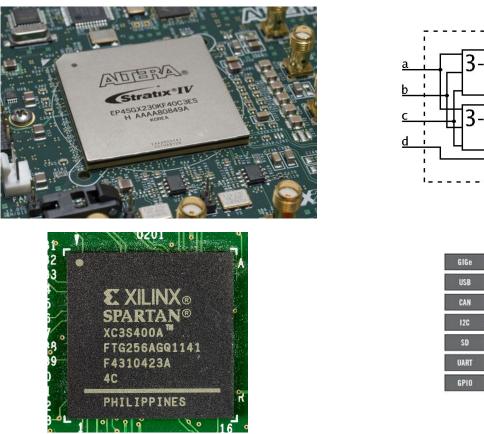
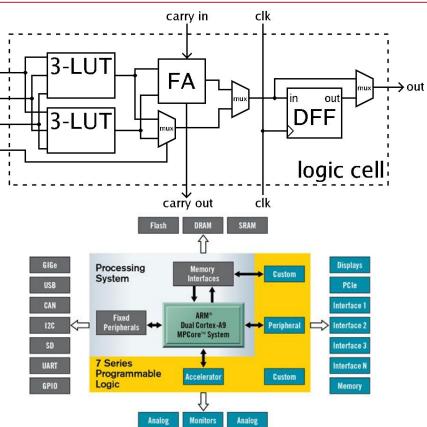





Table 2: Flips per nanosecond obtained by the optimized multi-spin code on a single Tesla V100-SXM card with different lattice sizes, requiring an amount of memory ranging from 2MB to 30GB. For comparison purposes, the table also reports the best timings with 1 and 32 TPUv3 cores from [7], and with 1 FPGA from [8].

Field-programmable gate array (FPGA)

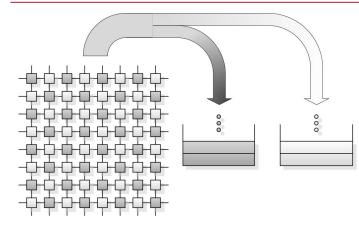
15

A **field-programmable gate array** (**FPGA**) is an integrated circuit designed to be configured by a customer or a designer after manufacturing – hence the term "field-programmable"... Circuit diagrams were previously used to specify the configuration, but this is increasingly rare due to the advent of electronic design automation tools.

2.

nttps://en.wikipedia.org/wiki/Field-programmable_gate_array

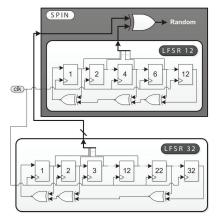
Carnegie Mellon University


Tepper School of Business

William Larimer Mellon, Founder

https://arxiv.org/pdf/1602.03016.pdfu

FPGA for 2D Ising Models


Checkerboard Algorithm diagram

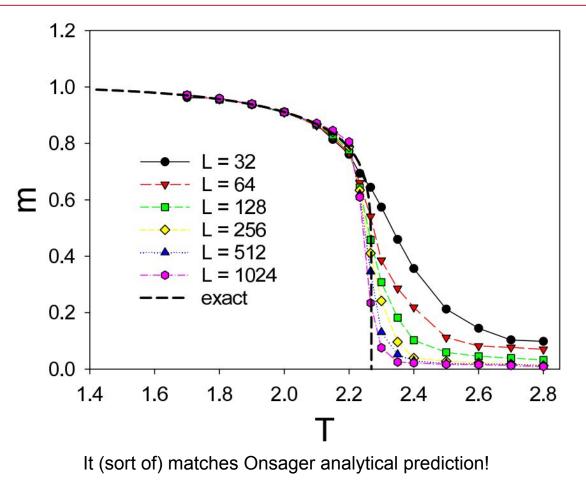
Platform	# updated spins	Ratio
CPU	62	1
Single GPU	7977	129
Previous FPGA	94127	1518
64 GPUs	206000	3322
Our FPGA	614400	9909

Number of spinflips per microsecond for the 1024x1024 lattice

Circuit Diagram Single Spin

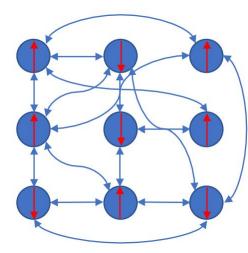
Circuit Diagram Random Number Generation

Carnegie Mellon University Tepper School of Business


1. https://arxiv.org/pdf/1602.03016.pdf

William Larimer Mellon, Founder

16 🤇



1. https://arxiv.org/pdf/1602.03016.pdf

Carnegie Mellon University Tepper School of Business

Working with general Ising Models

Main concern: How to actually

solve NP-Hard Problem?

Conventional computing (Von Neumann architecture) Natural computing Natural computing

Using a natural computing approach you would ideally use Adiabatic Quantum Computing, and realistically Quantum Annealing

Schrödinger equation

$$i\eta \frac{d}{dt} |\psi\rangle = H |\psi\rangle$$
 $H(\sigma_1, \sigma_2, \cdots, \sigma_n) = -\frac{1}{2} \sum_i \sum_j J_{i,j} \sigma_i \sigma_j + \sum_i h_i \sigma_i$

One cannot efficiently solve this equation using classical computers (if so, why would we need quantum computers after all!)

The issue then relies on (classically) Simulating Quantum Annealing

[1] A 20k-Spin Ising Chip to Solve Combinatorial Optimization Problems With CMOS Annealing. Yamaoka, Yoshimura, Hayashi, Okuyama, Aoki, and Carnegie Mellon University Mizuno

[2] https://arxiv.org/pdf/1807.10750-pd

William Larimer Mellon, Founder

Tepper School of Business

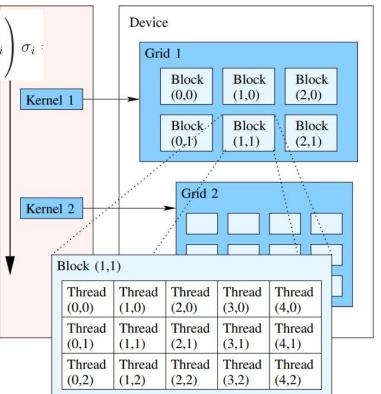
Graphical Processing Units

Algorithm 1 Modified Ising annealing algorithm

- 1: input: (M, N, \mathbf{S})
- 2: initialize all σ_i in **S**
- 3: for sweep-id in $\{1, 2, ..., M\}$ do
- 4: for σ_i in S do

5:
$$\sigma_i \leftarrow \operatorname{argmin}(H(\sigma_i))$$
 based on $\mathcal{H}_i(\sigma_i) = \left(-\sum J_{i,j}\sigma_j - h_i\right)$

- 6: end for
- 7: randomly choose and flip N spin glasses in **S**
- 8: decrease N
- 9: end for

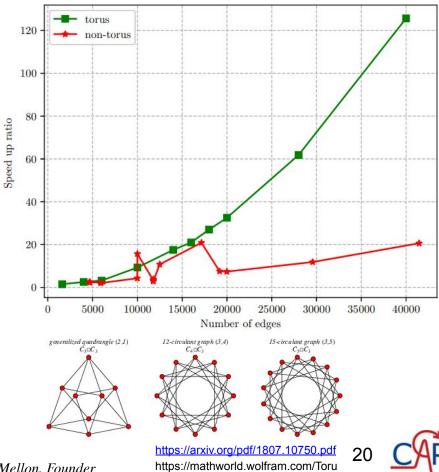

Algorithm 2 GPU Simulated Annealing method for Ising model

input: (F_p, \mathbf{S}) initialize ALL σ_i in \mathbf{S} while $F_p > 0$ do for all $\sigma_i \in \mathbf{S}$ in parallel do $\sigma_i \leftarrow \operatorname{argmin}(H(\sigma_i))$ flip σ_i with probability F_p end for reduce F_p end while

Tepper School of Business

William Larimer Mellon, Founder

"One may notice that since each spin glass may have a different number of neighbors, then the threads will not be perfectly load balanced."


https://arxiv.org/pdf/1807.10750 .pdf Cook, Zhao, Sato, Hiromoto

19

GPU Performance

	Days	Seconds
# edges	CPLEX cut	GPU cut (%accuracy)
9999	9473	8884 (93.78%)
14999	13357	12776(95.65%)
24998	20206	19981(98.88%)
49995	35248	36228(100.29%)
39998	33605	32914(97.94%)
59997	46371	46510(100.29%)
99995	70566	72009(102.04%)
199990	128448	131930(102.71%)
249995	176556	179391(101.60%)
374993	248505	255078(102.64%)
626988	392912	400540(101.94%)
1249975	741709	751050(101.25%)

Carnegie Mellon University

Tepper School of Business

William Larimer Mellon, Founder

https://mathworld.wolfram.c sGridGraph.html

CENTER

Simulated Bifurcation Machine

"The method in [previous slide] ignores the data dependencies to implement parallel computation on fully connected spin models. Since the modified algorithm in [previous slide] does not follow the mathematical model that the Quantum Monte Carlo is based on, the output of the simulation could deviate from the optimum."

How can we efficiently simulate quantum annealing? We can take a classical approximation

0.5 E(t)

1 (t) 0.5 (t)

1.

Equations model the bifurcation (Anil's lecture)

-1.5-1-0.5 0 0.5 1 1.5

-15-1-05005

-1.5-1-0.5 0 0.5 1 1.5

150

100 150

150

100

200

200

 $H_{SB}(\vec{x}, \vec{y}, t) = \sum_{i=1}^{N} \frac{\Delta}{2} {y_i}^2 + V(\vec{x}, t)$

$$V(\vec{x},t) = \sum_{i=1}^{N} \left[\frac{K}{4} x_i^4 + \frac{\Delta - p(t)}{2} x_i^2 \right] - \frac{\xi_0}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} J_{i,j} x_i x_j$$

$$\frac{\partial x_i}{\partial t} = \frac{\partial H_{SB}}{\partial y_i} = \Delta y_i$$

$$\frac{\partial y_i}{\partial t} = -\frac{\partial H_{SB}}{\partial x_i} = -[Kx_i^2 - p(t) + \Delta]x_i + \xi_0 \sum_{j=1}^N J_{i,j}x_j$$

21

Carnegie Mellon University _{2.} Tepper School of Business

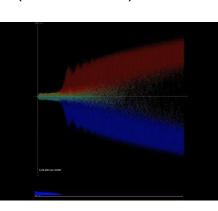
-0.5

0.5

А

o(t)

 $\epsilon_1(t), y_1(t)$

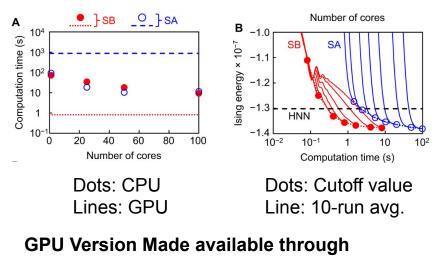

 $_{2}^{2}(t), y_{2}(t)$

0

1.5

Waidyasooriya, Hasitha, and Masanori Hariyama. "Highly-parallel FPGA accelerator for simulated quantum annealing." IEEE Transactions on Emerging Topics in Computing (2019). Goto, Hayato, Kosuke Tatsumura, and Alexander R. Dixon. "Combinatorial optimization by simulating adjust

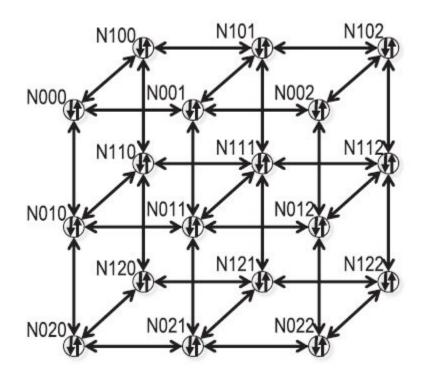

bifurcations in nonlinear Hamiltonian systems." Science advances 5.4 (2019): eaav2372. William Larimer Mellon, Founder

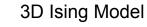

Simulated Bifurcation Machine

Authors implemented algorithm in FPGA to solve up to 20,000 nodes fully connected graphs

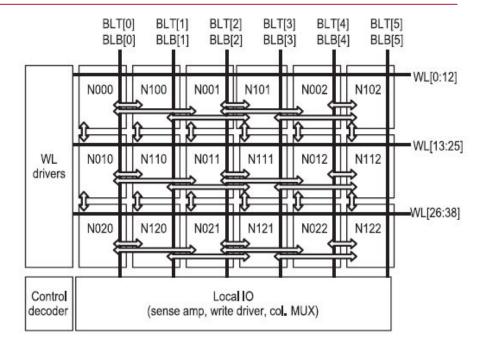
 $\begin{array}{c} \mathbf{B} & 40 \\ \mathbf{S} \\ \mathbf{S}$

Authors implemented algorithm in CPU and GPU to solve up to 1'000,000 nodes fully connected graphs


TOSHIBA aws


- 1. Goto, Hayato, Kosuke Tatsumura, and Alexander R. Dixon. "Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems." Science advances 5.4 (2019): eaav2372.
- 2. http://www.toshiba-sol.co.jp/en/pro/sbm/index.htm

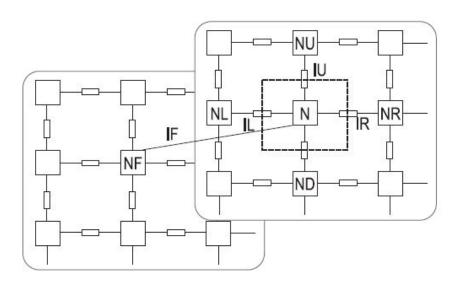
22 🤇

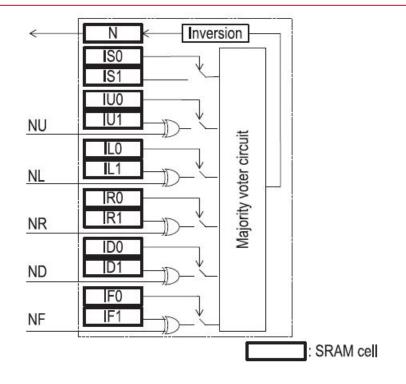

Carnegie Mellon University Tepper School of Business

Complementary metal-oxide semiconductors (CMOS)

1.

CMOS Static RAM (SRAM) Circuits


Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing." IEEE Journal of Solid-State Circuits 51.1 (2015): 303-309.


Carnegie Mellon University CMOS Tepper School of Business

William Larimer Mellon, Founder

23

Complementary metal-oxide semiconductors (CMOS)

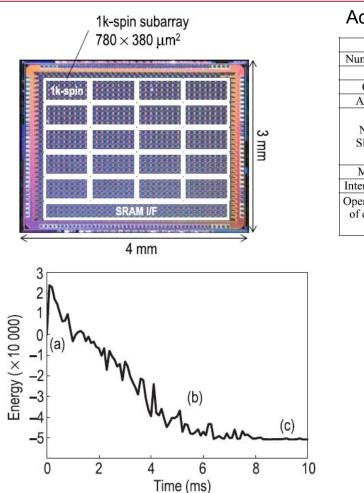
Each Spin has 5 neighbors (Up, Down, Right, Left, Front)

1.

Spin implementation as logic gates

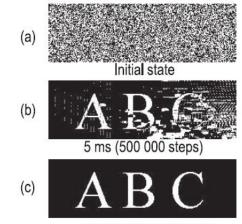
Use low voltage to indice random errors in SRAM and jump local minima

Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing." IEEE Journal of Solid-State Circuits 51.1 (2015): 303-309.


Carnegie Mellon University CMOS Tepper School of Business

William Larimer Mellon, Founder

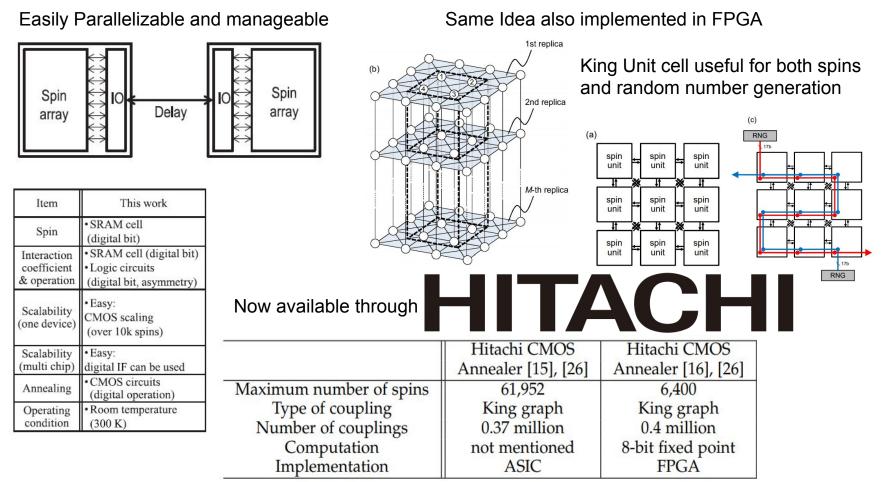
24 <u>C</u>


7

Complementary metal-oxide semiconductors (CMOS)

Actual Chip and Specs

Items	Value
Number of spins	20k (80 × 256)
Process	65 nm
Chip area	$4 \times 3 = 12 \text{ mm}^2$
Area of spin	$11.27 \times 23.94 = 270 \mu m^2$
Number of SRAM cells	260k bits Spin value: 1 bit Interaction factor: 2 bit × 5 = 10 bits External magnetic coefficient: 2 bits
Memory IF	100 MHz
Interaction speed	100 MHz
Operating current of core circuits (1.1 V)	Write: 2.0 mA Read: 6.0 mA Interaction: 44.6 mA


10 ms (1 000 000 steps)

25

1. Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing." IEEE Journal of Solid-State Circuits 51.1 (2015): 303-309.

Carnegie Mellon University CMOS Tepper School of Business

Complementary metal-oxide semiconductors (CMOS)

1. Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing."

Carregie Verlative Masato Havashi, and Masanao Yamaoka. "An Ising computer based on simulated quantum annealing by path integral Monte Carlo method."

Teppentischer Mellon, Founder

26

Let's go to this interactive interface of the CMOS device from Hitachi

https://annealing-cloud.com/en/play/ising-editor.html

Carnegie Mellon University Tepper School of Business

Digital Annealers

CMOS Implementation of Ising solution method Fully connected 1024 nodes 16-bit precision vs. 4-bit precision D-Wave

"For obtaining exact solutions of small-size problems, the SA machine called "Digital Annealer" may be the fastest so far."

2

https://arxiv.org/pdf/1806.08815.pdf 1.

https://spectrum.ieee.org/tech-talk/computing/hardware/fuiitsus-cmos-digital-annealer-produces-guantum-comput er-speeds

Carnegie Mellon University _{3.} Goto, Hayato, Kosuke Tatsumura, and Alexander R. Dixon. "Combinatorial optimization by simulating adjabation of the second Tepper School of Busine Surcations in nonlinear Hamiltonian systems "Science advances 5.4 (2019): eaav2372.

Digital Annealers

Alg	orithm 1 Simulated Annealing (SA		Al	gorithm 2 The Digital Annealer's Algorithm
1: f 2: 3: 4: 5:	or each run do initialize to random initial state for each temperature do for each MC sweep at this tempe for each variable do			$E_{\text{offset}} \leftarrow 0$
6: 7:	propose a flip	Parallel-trial and effective facost acceptanc	-	 for each MC step (iteration) do if due for temperature update, update the temperature for each variable j, in parallel do
8: 9:	end for end for	probability	8: 9:	
10: 11: 12: •	end for	Dynamic os	10: 11:	if at least one flip accepted then
		Dynamic off-set escape Helps surmount short, harrow barriers	12: 13: 14:	update the state and effective fields, in parallel
			15: 16: 17:	$E_{\text{offset}} \leftarrow E_{\text{offset}} + \text{offset_increase_rate}$
			18:	end for end for

1. <u>https://arxiv.org/pdf/1806.08815.pdf</u>

2. https://spectrum.ieee.org/tech-talk/computing/hardware/fuji tsus-cmos-digital-annealer-produces-quantum-computer-s

29

William Larimer Mellon, Founder

Carnegie Mellon University Tepper School of Business

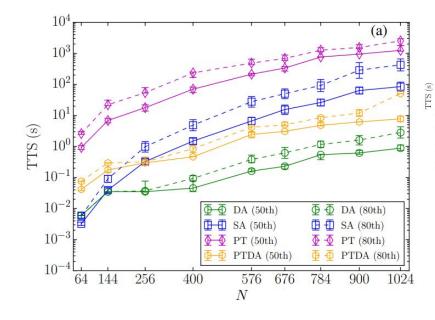
Parallel Tempering

Algorithm 1 Simulated Annealing (SA)		Algorithm 3 Parallel Tempering with Isoenergetic Clu (PT+ICM)	ister Moves				
1: 1	for each run do	1: initialize all replicas with random initial states					
2:	initialize to random initial state	2: for each MC sweep do					
3:	for each temperature do	3: for each replica, for each variable do					
4:	for each MC sweep at this temperature do	4: propose a flip					
5:	for each variable do	5: if accepted, update the state and effective fields					
6:	propose a flip	6: end for					
7:	if accepted, update the state and effective fields	7: for each pair of sequential replicas do					
8:	end for	8: propose a replica exchange					
9:	end for	9: if accepted, swap the temperatures between the replicas					
10:	update the temperature	10: end for					
11:	end for	11: perform ICM update, swapping the states of a cluster of variables that					
12:	end for	have opposite states in the two replicas; update the states and fields for both replicas					
		12: end for					

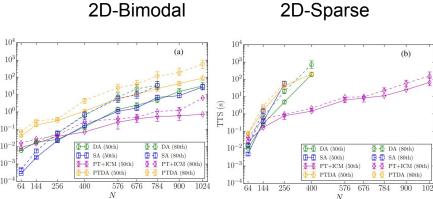
- Instead of having a single state you have several replicas
- Then the flips can be done among replicas
- It can be implemented in the Digital Annealer
- Additionally: There can be cluster updates (flip more than one spin if they are "connected")
 - Similar to Anil's intuition on the Swendsen-Wang Algorithm

Carnegie Mellon University

- 1. <u>https://arxiv.org/pdf/1806.08815.pdf</u>
- 2. https://spectrum.ieee.org/tech-talk/computing/hardware/fuji tsus-cmos-digital-annealer-produces-quantum-computer-s


Tepper School of Business

William Larimer Mellon, Founder


30

Digital Annealing v Simulated Annealing v Parallel Tempering

Fully connected instances

Digital Annealer Wins

Sparse instances

- DA Digital Annealer
- SA Simulated Annealing
- PT(+ICM) Parallel Tempering (+Isoenergetic Cluster Moves)
- PTDA Parallel Tempering Digital Annealer

Parallel Tempering Wins

- 1. https://arxiv.org/pdf/1806.08815.pdf
- S. V. Isakov, I. N. Zintchenko, T. F. Rønnow, and M. Troyer, Optimized simulated annealing for Ising spin glasses, Comput. Phys. Commun. 192, 265 (2015)

Carnegie Mellon University Tepper School of Business

William Larimer Mellon, Founder

31 CAPD

Quantum Computing Challenge Series

СН	Quantum Computing Challenge Series - Max Cut Marathon Match	\$11,500
тсо	Ended Apr 04 Marathon Match	Purse
CH	Quantum Computing Learning Challenge #3 - Max Cut	\$250
TCO	Ended Aug 04 Python Data Science Other	Purse
СН	Quantum Computing Learning Challenge 2 - Scheduling	\$250
тсо	Ended Feb 28 Python Data Science Other	Purse
СН	Quantum Computing Learning Challenge #1 - Solve Sudoku Instantly	\$250
TCO	Ended Feb 14 Algorithm Python Data Science +1	Purse

Carnegie Mellon University Tepper School of Business

- 1. <u>https://arxiv.org/pdf/1806.08815.pdf</u>
- 2. <u>https://spectrum.ieee.org/tech-talk/computing/hardware/fuji</u> <u>tsus-cmos-digital-annealer-produces-quantum-computer-s</u> <u>peeds</u>
- 3. https://tc3-japan.github.io/DA_tutorial/index.html *William Larimer Mellon, Founder*

Digital Annealer v Application-specific integrated circuit v FPGA v GPU

	Fujitsu Digital Annealer [25]	Hitachi CMOS Annealer [15], [26]	Hitachi CMOS Annealer [16], [26]	FPGA accelerator
Maximum number of spins	8192	61,952	6,400	32,768
Type of coupling	Total coupling	King graph	King graph	Total Coupling
Number of couplings	67 million	0.37 million	0.4 million	1 billion
Computation	64-bit fixed-point	not mentioned	8-bit fixed point	32-bit floating-point
Implementation	ASIC	ASIC	FPGA	2-FPGA connected via fibe
Category	FP			accelerator
C ·	FD	and the second se		
	FP			
Speed-up	FP		ler	nentation
Speed-up Accuracy	FP		ler	nentation
Speed-up Accuracy Problem size	FP		ati	nentation on
Speed-up Accuracy	FP		ati	nentation
Speed-up Accuracy Problem size	FP		ely	nentation on
Speed-upAccuracyProblem sizePower consumption	FP		ely	nentation on large
Speed-upAccuracyProblem sizePower consumptionPower-efficiencyAvailability	Requi		ely m	nentation on large small PCs to supercomputers
Speed-upAccuracyProblem sizePower consumptionPower-efficiencyAvailability			ely ely m D A,	nentation on large small

1. Waidyasooriya, Hasitha Muthumala, and Masanori Hariyama. "A GPU-Based Quantum Annealing Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism."

Waidyasooriya, H.M., Hariyama, M., Miyama, M.J. et al. OpenCL-based design of an FPGA accelerator for quantum annealing

Carnegie Mellon University mulation.

Tepper School of Bushleads S William Larimer Mellon, Founder

Alternatives available

	Fixstars Optigan	D-Wave 2000Q	Hitachi CMOS Annealing	Fujitsu Digital Annealer	Toshiba SBM
Calculation method	GPU	Quantum annealing	Digital circuit	Digital circuit	GPU
Maximum number of bits	Over 100,000	2,048 (16x16x8)	61,952 (352x176)	1,024/ 8,192	10,000
Coefficient parameter	Digital (32 / 64bit)	Analog (about 5bit)	Digital (3bit)	Digital (16/64 bit)	Digital (32bit)
Combined graph	Fully combined	Chimera graph	King Graph	Fully combined	Fully combined
Total number of combined conversion bits	65,536	64	176	1,024/ 8,192	1,000
API endpoint	Fixstars	D-Wave Cloud	Annealing Cloud Web	DA Cloud	AWS

Carnegie Mellon University Tepper School of Business

Playing with Fixstars's Optigan

Let's go to this interactive interface of the GPU implementation from Fixstars Optigan

https://quantum.fixstars.com/product/demo#demoModal

Translated version (but you cannot run it)

https://colab.research.google.com/github/bernalde/QuIP/blob/master/noteb ooks/Notebook%208%20-%20Amplify%20Tutorials.ipynb

Carnegie Mellon University Tepper School of Business

- Non-linear Integer Programs model a variety of real world problems from many domains
- Solving them classically has limitations, especially with non-convex objectives, constrained integer variables
- We explored non-classical approaches based on QUBO/Ising
- GAMA is a general purpose heuristic that utilizes Graver Test-Set
- There are a variety of options to solve Ising model

Carnegie Mellon UniversityTepper School of Businesswill

