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V/Conventional (Von Neumann) vs. Natural
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Computing

Conventional _ 77
computing > Repeated calculation by program ‘.
(Von Neumann || o 7 w L
architecture) | S = h
€ | | Mapping to _ S
Naturgl >{ natural > Convergence [>{Observation
computing phenomena
2D Ising model - Simple yet interesting Arbitrary Ising - Applicable but hard!

Ising
Models

Main concern: How to parallelize Main concern: How to actually solve

_Monte Carlo Simulations , _ NP-Hard Problem ,
[1] A 20k-Spin Ising Chip to Solve Combinatorial Optimization Problems With CMOS Annealing. Yamaoka, Yoshimura, Hayashi, Okuyama, Aoki, and

Carnegie Mellon University Mizuno
. [2] https://arxiv.org/pdf/1807.10750.
Teppe r SChOOl Of BUS INEeSS William Larimer Mellon, Founder i o 9 g‘%\[l)\
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’ 4 Specialized Hardware for Ising/QUBO

/

GPUs and TPUs Complementary metal-oxide
semlconductors (CMOS)
Grid 1
B]ock Bl ck B] ck 1k-spin subarray
[Kemein} (o 0) (1 0) (2 0) 780 x 380 um?
B]ock Bl ck Bl ck
(0 1) (1 1) (2 1)
Kernel 2 [—— .
=i w
- 3
Block (1,1) 3
Thread | Thread reac
(0,0) (1,0)
Thread | Thread | Thread | Thread | Thread
(0,1) (1,1) @,1) 3,1) “4.1)
Thread | Thread | Thread | Thread | Thread
(0,2) (1,2) 22 3,2 (4.2)

Digital annealers Oscillator Based Computing
N @ - PU_Tp PPLN V\{éveguide

SHG —1
T OPO 160
l Pulsed Laser I
1560 nm
|
 ncton |
[1]https://arxiv.org/pdf/1807.10750.pc
[2]https://arxiv.org/pdf/1903.11714.pc 6
[3]https://arxiv.org/pdf/1806.08815.p¢ —
[ﬂh.tmz&pﬁﬁ.tﬂlmwm_tﬁm < Fiber beamsplitter
Cal‘negie Mellon UIliVeI‘Sity [5]https://science.sciencemag.org/content/sci/354/6312/614.full.pdf C P D
: 4
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https://arxiv.org/pdf/1806.08815.pdf
https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds
https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds
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Graphical Processing Units (GPU)
CPU vs GPU
CPU GPU VIDIA.
GPU CLOUD
Central Processing Unit Graphics Processing Unit
Several cores Many cores
Low latency High throughput
Good for serial processing Good for parallel processing
: _ y The Difference between a CPU and GPU
Can do a handful of operations at once Can do thousands of operations at once

horse-sized duck s duck-sized horses

g - Specialized, electronic circuit designed to rapidly manipulate

and alter memory to accelerate the creation of images... .
Their highly parallel structure makes them more efficient than
general-purpose central processing units (CPUs) for
algorithms that process large blocks of data in parallel.

1. https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
2. https://www.quora.com/Would-you-rather-fight-100-duck-sized-horses-or-one-horse-sized-duck
3 https://en.wikipedia.org/wiki/Graphics_processing_unit

Carnegie Mellon University
Tepper School of BUSINESS  wittiam Larimer Melion, Founder
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https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://www.quora.com/Would-you-rather-fight-100-duck-sized-horses-or-one-horse-sized-duck
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Memory_(computing)
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Algorithm
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; Graphical Processing Units

Algorithm 1 Modified Ising annealing algorithm
1: input: (M, N, S)
2: initialize all o; in S
3: for sweep-id in {1, 2, ..., M} do

4. for o, in S do Device
5 o; < argmin(H (o;)) based on H;(o;) = Z Ji,j05 — z) 0; Grid 1
6 end for . . Block Block Block
7:  randomly choose and flip NV spin glasses in S :}Keme“ " (0,0) (1,0) 2,0)
8 decrease IV Block-| | Block [:| Block
9: end for (0.1 1) B e
Algorithm 2 GPU Simulated Annealing method for Ising
o] Remaia] |~
input: (F,,S) | N BN
initialize ALL o; in S n N N
while £, > 0 do YV [Blockp
for all o; € S in parallel do Thread | Thread | Thread | Thread | Thread
o; < argmin(H (o;)) O HLD G0 NS0 8.0
fli . ith probabilitv. I Thread | Thread | Thread | Thread | Thread
Ip 0; Wil p Yy £'p ©1 |11 [@1) (Gl |@l)
end for Thread | Thread | Thread | Thread | Thread
reduce F), 02 |12 |22 [B2 |42
end while

- . 1. https://arxiv.org/pdf/1807.10750.pdf
Tepper SChOOl Of BUS'DeSS William Larimer Mellon, Founder 6 C PD
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GPU for 2D Ising Models
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(a)

Block | Block Blo. Blo
0 1 2

Block | Block | Block | Block
4 5 6 7

Block | Block | Block | Block
8 9 10 11
Block | Block | Block | Block
12 13 14 15

Figure 1: (Color online) The spin lattice is processed by a variable number of blocks (a), where each block runs a variable number of threads (b).

(b)

Thread|Thread
0 1

Thread QIIEEL

2

[Thread|Thread
4 5

Thread|Thread
6 7

[Thread|Thread
8 9

Thread|Thread
10 1

[Thread|Thread
2 13

Thread|Thread
14 15

The threads update the spin lattice in two steps, 4 and B, using two kernel invocations (c).

Perform the Ising Update via easily

parallelizable operations.

Update A

. | UpdateB
H N
H B

(a)

Spinflips per us  Relative speed
CPU simple 26.6 0.11
CPU multi-spin coding 226.7 1.00
shared memory 4415.8 19.50
shared memory (Fermi) 8038.2 35.46
multi-spin unmodified 3307.2 14.60
multi-spin coding on the fly 5175.8 22.80
multi-spin coding linear 7977.4 35.20

Carnegie Mellon University

Tepper School of Business

Encode spins into threads
and classify +1 and -1 in
separate buckets

(b) (c)

Spins in shared memory Update pattern
> >
(d)

Old spins New spins

Figure 2: (Color online) (a) The way a kernel processes a 4 X 4 meta-spin. (b) Spins are extracted into shared memory and an update pattern is
created (c). (d) Afterwards, the new spins are obtained using the update pattern (Spins on blue sites will be flipped, spins on white sites will not be

flipped), and written back to global memory.

1. https://arxiv.org/pdf/1007.3726.pdf

William Larimer Mellon, Founder
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Correctness of GPU’s results
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1 | 1 1 Il 1 1 1 1 Il 1

| keTc = 2.269185 J
0.7 : I
0.6 , I
0.5 ! I
S 0.4 | -
0.3 1 n2=16 — J I
N2=32 — |
0.2 n/2 = 64 . I
n/2 =128 — :
n/2 = 256 =— .
0.1 : -

2.245 2.250 2.255 2.260 2.265 2.270 2.275 2.280 2.285 2.290 2.295
kgT [J]

Fig. 5. Binder cumulant U, in dependence of kT for various numbers n of spins per row and column of the two dimensional square lattice Ising model. n/2
corresponds to the involved number of threads per block on the GPU implementation. The curves of the Binder cumulants for various system sizes N = n?
cross almost perfectly at the critical temperature derived by Onsager (3], which is shown additionally as a dashed line. In each temperature step, the
average was taken over 10’ measurements.

It (sort of) matches Onsager analytical prediction!

Carnegie Mellon UniverSity 1. https://arxiv.org/pdf/1007.3726.pdf 8 C P D
Tepper School of BUSINESS  wittiam Larimer Metion, Founder
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Parallelizing GPUs

51— T
(a) (-\ (b) — 100.000 x 100.000
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Figure 4: (Color online) (a) Each GPU processes a “meta-spin” lattice of size N = n?. The lattices are aligned on a super-lattice, and the outer

borders are connected via periodic boundary conditions. In this example, 4 GPUs process a system of 22 - N spins. (b) A meta-spin update needs the

4 nearest neighbor meta-spins. On the borders of a lattice, each GPU needs the spin information of the neighboring lattices. The border information

has to be passed between the GPUs. In our implementation this is done by using 8 neighbor arrays. Figure 5: (Color online) Cluster performance for various system sizes (per GPU). For more than one GPU, spin flip performance scale
linearly with the amount of GPUs. Again, optimal performance is reached at a lattice size of about 4096 x 4096 per GPU. Using 64
|performance of 206 spinflips per nanosecond can be achieved on a 800.000 x 800.000 lattice. |

Number of GPUs

Using 64 GPUs performance of 206 spinflips per
nanosecond can be achieved on a 800,000x800,000 lattice

Carnegie Mell()n UniverSity 1. https://arxiv.org/pdf/1007.3726.pdf 9 C P D
Tepper School of BUSINESS  wittiam Larimer Metion, Founder
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Tensor Processing Units (TPU)

Machine learning performance and benchmarks

ResNet-50 Training Cost Comparison

100.!
Cloud TPU v2 Cloud TPU v3 $100.00
180 teraflops 420 teraflops
64 GB High Bandwidth Memory (HBM) 128 GB HBM .
75.00

8V100 GPUs 27 times faster training

training duration: at 38% lower cost with TPUs

$50.00 216 minutes for

90 epochs
1full Cloud TPU v2

Pod training duration:

— W% 7.9 minutes for
r—— - 90 epochs
Cloud TPU v2 Pod Cloud TPU v3 Pod
11.5 petaflops 100+ petaflops $0.00
4 TBHEM Sz T HEM Google Cloud VM with 8 V100 GPUs Full Cloud TPU v2 Pod

2-D toroidal mesh network 2-D toroidal mesh network

Tensor Processing Unit (TPU) is an Al accelerator application-specific integrated circuit (ASIC) developed by Google specifically for
neural network machine learning, particularly using Google's own TensorFlow software.

1 , ikipedi KT - ing_Uni lia/File:T

Carnegie Mellon University Dacassing_Unll_30.p

2. https://cloud.google.com/tpu
Tepper SChOOl Of BUSIDESS William Larimer Mellon, Founder 10 C PD
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https://en.wikipedia.org/wiki/Tensor_Processing_Unit#/media/File:Tensor_Processing_Unit_3.0.jpg
https://en.wikipedia.org/wiki/Tensor_Processing_Unit#/media/File:Tensor_Processing_Unit_3.0.jpg
https://en.wikipedia.org/wiki/AI_accelerator
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/TensorFlow
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; PU for 2D Ising

Checkerboard Algorithm: break lattice in sublattices and group equal spins to easily operate on them

::t Haall-f=sii--ssflH-{==
HHaa | HHas |HHas|Hes
o Mgy s
HHaa) | HHas |HHas | Hes

i B R
HHaa | HHas |HHas | Hes

Haall-{=sii-H-=sflH-{==

Haa|[Has) Has) Has

(1)

—~
N
~—"

Figure 3: A 2-d checkerboard: (1) Original checkerboard: on the left, the 16 x 16 board is split into
a 4 x 4 grid of 4 x 4 sub-lattices, i.e., it is represented by a [4, 4,4, 4] tensor, where [I, k, :,:] is the
sub-lattice at [l, k| of the grid; on the right, the sub-lattice is zoomed in and the indices of its spin
sites are shown; (2) Reorganized checkerboard: one the left, each 4 x 4 sub-lattice is reorganized
by 4 “compact” 2 x 2 sub-lattices; on the right, 4 “compact” 2 x 2 sub-lattices are zoomed in and
their original indices from the 4 x 4 sub-lattice are shown. In general, such alternate coloring of
black and white can be extended to lattices with any dimensions.
1. https://arxiv.org/pdf/1903.11714.pdf

Carnegie Mellon University
Teppe r SChOOl Of BUS'HeSS William Larimer Mellon, Founder " ggipﬁl[z
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Correctness of TPU’s results

2

- Binder parameters on square lattices with different sizes using bfloat16 - m(T) on square lattices with different sizes using bfloat16
= ‘E’l 00
<,
has £ 6 [ . 3
5 B Lattice Size
g g7 W -2
& 04 %’U M-
© -
< g 0.50 I --126
2 02 - B n=2s6
= § 0.25- n=512
<
00~ 0.00~-
TIT,
c =
= 1.00- — .
5 06- B ) T~
5 ) — Lattice Size
© 5=
2 I B -3
£ oa- g m... It (sort of) matches
< % 0.50~ .
a =128
5 - .- Onsager analytical
T g, 2 B =256
@ 0.25- g . .
2 ~uz  prediction!
00~ 0.00~
( 05
T, - T/,
= The difference of Binder parameters using bfioat16 and float32 % Difference of m(T) using bfloat16 and float32
=
= f .
2 0.004 1 < on 4|
3 C
| £ ' )
e o | J Lattice Size
0O 0003 s =
1 ’ ' % 00- v—'f‘"\ W2
i | N - n=64
& 0002 I ] W -128
g g :
i ! s 01- B n=2s6
o 0001 |\ 2 ] n=512
Z
do0o- L - l
: 1 ; |
05 10 05 10
T, T,

1. https://arxiv.org/pdf/1903.11714.pdf
Carnegie Mellon University

Tepper SChOOl Of BUSIﬂeSS William Larimer Mellon, Founder 12 C PD
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/4 Efficiency of TPU cluster

attice size n* ips/ns nJ/fli
lattice size n® | (flips/ns) | (nJ/flip)

(20 x 128)? 81920 | 12.2070

(40 x 128)? 9.3623 | 10.6811 130 .
(80 x 128)2 12.3362 | 8.1062 120

(160 x 128)2 12.8266 | 7.7963 GO

2]
£-10.0

)
(320 x 128)2 12.9056 | 7.7486 =95
(640 x 128)2 12.8783 | 7.7650 '

8.0

GPU in [23, 3] 7.9774 -~ S8 & 8 2 2
Nvidia Tesla V100 | 11.3704 | 21.9869 €8 g S .
FPGA in [20] 614.4 - lattice size

Better performance and less energy consumption than Nvidia GPUs, until... (next slide)

Really far from Field-programmable gate array (FPGA)! (a couple slides more)

Code available in Github and replicable results (with a Google Cloud account)
https://github.com/google-research/google-research/blob/master/simulation_research/ising_model/i
sing_mcmc_tpu.ipynb

1. https://arxiv.org/pdf/1903.11714.pdf

Carnegie Mellon University
Tepper SChOOl Of BUS'DGSS William Larimer Mellon, Founder 13 Q%\R



https://github.com/google-research/google-research/blob/master/simulation_research/ising_model/ising_mcmc_tpu.ipynb
https://github.com/google-research/google-research/blob/master/simulation_research/ising_model/ising_mcmc_tpu.ipynb
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4 Nvidia’s Rebuttal!
lattice size  flip/ns TS ve itice e
(1 x 2048)* | 231.09 ' ' ! ; ! H
(2 x 2048)2 | 31895 o | | -
(4 x 2048)% 137927 | i
(8 x 2048)% | 411.65 2
(16 x 2048)% | 42044| & 0l o
(32 x 2048)2 | 420.77
(64 x 2048)2 |41823] o f :
(123 x 2048)% | 417.53 : , , i :
200 - -
I TPUV3 corein [7] | 12.91 & 8 o I 3 &
32 TPUV3 cores in [7] | 336.01 P AN S S A
FPGA (1024%) [8] [p14.40" nasiioet i schin N

Table 2: Flips per nanosecond obtained by the optimized multi-spin code on a single Tesla V100-SXM card with
different lattice sizes, requiring an amount of memory ranging from 2MB to 30GB. For comparison purposes, the table

also reports the best timings with 1 and 32 TPUv3 cores from [7], and with | FPGA from [8].

Better performance than TPUs

1

Still far from Field-programmable gate array And of ’?

(FPGA)! (next slide) course g

they .

Code available in Github and replicable compare B 5
results https://github.com/NVIDIA/ising-apu against

Onsager .

Carnegie Mellon University 1. nhttpsi/andv.orgipdf/1906.06297.pdf 6

Tepper School of Business

William Larimer Mellon, Founder

Magnetization

Onsager solution
| I

5122 —+—
10242

20482 —%—
4096 —5—

| |

Figure 5: Stcady state

14

1.6 1.8 2
temperature

2.2 2.4 2.6

NN

ined with the multi-spin code for lattice sizes 5127, 10242, 20482,
and 4096°. The solid vertical line marks the critical temperature value T,. = 2.269185.
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https://github.com/NVIDIA/ising-gpu

Y/Field-programmable gate array P
% (FPGA)

\ Ly \ .l carry in clk

— a R . . o " " | e
a . [ 13-LUT[_ :
. FA |—_B__H

: | mux n out :

< H3LUTL 4 DFF|
d — :
e

V
carry out clk

m?m

Processing Memory W m
System Interfaces m
t ~ Interface 1
Fixed
Peripherals Peripheral :}m
- Interface 3

7 Seri t
rof:;(l:':r:mable m

T I

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after
manufacturing — hence the term "field-programmable”... Circuit diagrams were previously used to specify the configuration, but this is

increasingly rare due to the advent of electronic design automation tools. .
T. nups://en.wikipeaia.org/wiki/Field-programmable_gate _array

2. https://arxiv.org/pdf/1602.03016.pdfu

Carnegie Mellon University

Tepper SChOOl Of BUSIﬂeSS William Larimer Mellon, Founder 15 C PD
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https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Field-programmability
https://en.wikipedia.org/wiki/Circuit_diagram
https://en.wikipedia.org/wiki/Electronic_design_automation
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N

FPGA for 2D Ising Models

000

Checkerboard Algorithm diagram

Platform # updated spins | Ratio
CPU 62 1
Single GPU 7977 129
Previous FPGA 94127 1518
64 GPUs 206000 3322
Our FPGA 614400 9909

Number of spinflips per microsecond for the

1024x1024 lattice

Carnegie Mellon University
Tepper School of Business

Lookup
Table

|Ciesin) e
LFSR32 D_YF

Clk_B
Clk A,

S Com2

e
> >

Circuit Diagram Random
Number Generation

https://arxiv.org/pdf/1602.03016.pdf
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g/(:orrectness of FPGA's results

1.2
1.0 Jmmm o
0.8 - \‘\
—e— | =32
—v—- L=64
£061 o =128
- L =256
0.4 A aweay A L =512
--o— L =1024
0.2 - ——— exact
0.0

1.4 1.6 1.8 2.0

It (sort of) matches Onsager analytical prediction!

1. https://arxiv.org/pdf/1602.03016.pdf

Carnegie Mellon University
Tepper SChOOl Of BUS'DGSS William Larimer Mellon, Founder 17 Q%\R
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;/Working with general Ising Models

Conventional 7
computing > Repeated calculation by program %\, >
(Von Neumann || o — o
architecture) ] S S K
@ | | Mapping to _ S
Natural > natural |»{ Convergence —)lObservatlonI—a
computing phenomena

Using a natural computing approach you would ideally use Adiabatic
Quantum Computing, and realistically Quantum Annealing

Schroédinger equation

Main concern: How to actually 1
solve NP-Hard Problem? i,’di’m =Hly) H(c1,62,++ ,0n) = 3 Z Z]i’jo'io'j 5 Z hio;
t i j i

One cannot efficiently solve this equation using classical computers
(if so, why would we need quantum computers after all!)

The issue then relies on (classically) Simulating Quantum Annealing

[1] A 20k-Spin Ising Chip to Solve Combinatorial Optimization Problems With CMOS Annealing. Yamaoka, Yoshimura, Hayashi, Okuyama, Aoki, and

Carnegie Mellon University Mizuno
. [2] https://arxiv.org/pdf/1807.10750¢
Teppe r SChOOl Of BUS INEeSS William Larimer Mellon, Founder i o 8 Q%\R
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; Graphical Processing Units

Algorithm 1 Modified Ising annealing algorithm “One may notice that since each spin glass
I: input: (M, N, S) may have a different number of neighbors,
2. initialize all o; in S theln the tr’]reads will not be perfectly load
3: for sweep-id in {1, 2, ..., M} do b:a anced.

4. for o, in S do Device
5 o; + argmin(H (o;)) based on H,(o;) = Z Jij05—hs | oy T
6 nd for

end fo . _ Block | | Block | | Block
7:  randomly choose and flip N spin glasses in S :}Kemel ; " (0,0) (1,0) 2,0)
8 decrease NV :

Block.-| | Block [+| Block

9: end for (0,1) (L) |} @20

Algorithm 2 GPU Simulated Annealing method for Ising

2 [Grd2
mc?del :Kemel | - -

input: (F},,S) | I | | l |

initialize ALL o; in S . .
while F}, > 0 do Y Block (1,1)
for all o; € S in parallel do Thread | Thread | Thread | Thread | Thread
o; < argmin(H (o;)) 0o 140 |20 [G0 |G0)
fli ) ith babilitv F Thread | Thread | Thread | Thread | Thread
1p 0 with probability Iy on @) |en |6 |@n
end for Thread | Thread | Thread | Thread | Thread
reduce F, 02 |12 |22 [B2 |42
end while

- . https:/arxiv.org/pdf/1807.107
TEDDGF SChOOl Of BUS'DGSS William Larimer Mellon, Founder -pdf 19 C PD

Cook, Zhao, Sato, Hiromoto
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4
/GPU Performance

Days Seconds
# edges | CPLEX cut | GPU cut (%accuracy) ol .
9999 9473 8884 (93.78%) R
14999 13357 12776(95.65%) 1001
24998 20206 19981(98.88%)
49995 35248 36228(100.29%) o %
39998 33605 32914(97.94%) :
59997 46371 46510(100.29%) 2 @
99995 70566 72009(102.04%) &
199990 128448 131930(102.71%) ]
249995 176556 179391(101.60%) e
374993 248505 255078(102.64%)
626988 392912 400540(101.94%) -
1249975 741709 751050(101.25%) 0 5000

generalized quadrangle (2.1)
G;0C;

Carnegie Mellon University

Tepper School of Business

William Larimer Mellon, Founder

T
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T T T T T
20000 25000 30000 35000 40000

Number of edges

T
15000

https://arxiv.org/pdf/1807.10750.pdf 20

https://mathworld.wolfram.com/Toru
sGridGraph.html
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Simulated Bifurcation Machine

“The method in [previous slide] ignores the data dependencies to implement parallel computation on
fully connected spin models. Since the modified algorithm in [previous slide] does not follow the
mathematical model that the Quantum Monte Carlo is based on, the output of the simulation could
deviate from the optimum.” N o
Hsp(%.9.t) = ) S o’ +V(Z.1)
How can we efficiently simulate quantum annealing? =
We can take a classical approximation

Equations model the bifurcation (Anil’s lecture)

ol > Ox; aHSB
? 158 ] 45 8_ = 3 = Ayl
L | 1 ;
~ 15 : o 25 ‘ t Yi
% Ap ! X' o 55
osl : -05 ! 5 OH
2 ! =
| e ilj o5 _ SB — - Z
00 50 100 150 200 —1.5—1—0A5 005115 ¢ axl [ p(t) + A]xl + ‘EO ]l ]xj
15 ] 150 4 Jj=1
R 1F ' 1 35
i; 05} [2 05 2_5
o 0 A o 2 Ta
::E—o,s 3 ><—0.5 #n 1.5
=1 | : -1
—1,; L X =42 3.5
50 100 150 200 -15-1-05005 1 15
g 158
* 1?0 =SS 05x01 7D 1. Waidyasooriya, Hasitha, and Masanori Hariyama. "Highly-parallel FPGA accelerator for simulated quantum
C M ll U annealing." IEEE Transactions on Emerging Topics in Computing (2019).
arnegle elion nl"erSlty 2. Goto, Hayato, Kosuke Tatsumura, and Alexander R. Dixon. "Combinatorial optimization by simulatingC' D

bifurcations in nonlinear Hamiltonian systems." Science advances 5.4 (2019): eaav2372.
Teppe r SChOOl Of BUS INess William Larimer Mellon, Foun)c/ler ( ;
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http://www.youtube.com/watch?v=R-SydOC3OIQ
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Simulated Bifurcation Machine

—
P

Authors implemented algorithm in FPGA to solve
up to 20,000 nodes fully connected graphs

A 0
-10,000 |+
-20,000 |
>
>
© -30,000 -
[}
_8—40,000-
0
-50,000 |
-60,000 GW-SDP
_70,000 Ll Ll Ll L
103 102 10" 1 10
Computation time (ms)
Ave. of HNN GW-SDP
Best Ave. Worst| Best Ave. Worst
(ms) (ms) (ms) | (ms) (ms) (ms)
SB 0.047 0.061 0.074 |0.040 0.047 0.058
CIM |0.155 0.769 N/A |[0.071 0.264 1.16
SA 2.64 6.80 N/A 1210 320 7.15

Carnegie Mellon University

Tepper School of Business

Counts Counts

Counts

40
30
20
10

30
20
10

40

30
20

graphs
SB 32,768 A ® 1sB O }SA Number of cores
" b e s = B _ip
- L | e
g R Eaaasabasnhniabe = =i
c 1029 >
S 2 12}
S 10} 8 8 ® 2
CIM g =N .
o § | R e O R Pt AP ) T SRS TR 5 HNN A\
-1 1 L 1 1 - 4 1 L 1
32459 10 20 40 60 80 100 102 101 1 10 102
Number of cores Computation time (s)
" Dots: CPU Dots: Cutoff value
32314 50ms Lines: GPU Line: 10-run avg.
GPU Version Made available through
32,000 33,000
TOSHIBA AWS
1. Goto, Hayato, Kosuke Tatsumura, and Alexander R. Dixon. "Combinatorial optimization by simulating

Authors implemented algorithm in CPU and GPU

to solve up to 1°000,000 nodes fully connected

adiabatic bifurcations in nonlinear Hamiltonian systems." Science advances 5.4 (2019): eaav2372.
2. http://www.toshiba-sol.co.jp/en/pro/sbm/index.htm

William Larimer Mellon, Founder
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semiconductors (CMOS)

_—
P

BLT0] BLT(] BLT[2] BLT(3] BLT[4] BLT[S]
N101 BLB[0] BLB[1] BLB[2] BLB[3] BLB}4] BLB[5]

oD 2 oD £
> <

NO0O N100 NOO1 N101 N002 N102
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F]FJﬁ_Jlﬂ’_‘Jﬁ_J

>

WL[0:12]

drivers

WL NO10 N110 NO11 N111 NO12 N112

vi'

Q;Jb;Jé;Jﬁ;Jé_J

WL[13:25]

WL[26:38]

Lo

NO20 N120 N021 N121 NO22 N122

]

” l"l I)IA

Control Local IO
decoder (sense amp, write driver, col. MUX)

3D Ising Model

CMOS Static RAM (SRAM) Circuits

1. Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with

Carnegie Mellon University ~ cmos annealing.” IEEE Journal of Solid-State Circuits 51.1 (2015): 303-309.

Te p p er SC h OOl Of B us | ness William Larimer Mellon, Founder
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; semiconductors (CMOS)
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———IND——— — .DI_ J/ g
L l | I 4 ND -I'.]- J->_\_
- — 1 =] ’
u ! " NF F oy
] SRAMell
Spin implementation as logic gates

Each Spin has 5 neighbors (Up,
Down, Right, Left, Front)

+

Use low voltage to indice random errors in
SRAM and jump local minima

1. Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with

Carnegie Mellon University ~ cmos annealing.” IEEE Journal of Solid-State Circuits 51.1 (2015): 303-309.
Teppe r SChOOl Of BUS'DESS William Larimer Mellon, Founder 24 Q%P\R
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semiconductors (CMOS)

Complementary metal-oxide

1k-spin subarray
780 x 380 um?

Energy (x 10 000)

Carnegie Mellon University

ww ¢

Actual Chip and Specs

Items Value
Number of spins |20k (80 x 256)
Process 65 nm
Chip area 4x3=12 mm?

Area of spin

11.27 X 23.94 =270 um?

260k bits

Number of Spin value: 1 bit
SRAM cells Interaction factor: 2 bit X 5= 10 bits
External magnetic coefficient: 2 bits
Memory [F 100 MHz
Interaction speed |100 MHz
Operating current | Write: 2.0 mA
of core circuits |Read: 6.0 mA

(1.1V)

Interaction: 44.6 mA

Tepper School of Business

(c)

5ms (500 000 steps)

ABC

0 2 4 6 8
Time (ms) 10 ms (1 000 000 steps)
1. Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with

CMOS annealing." IEEE Journal of Solid-State Circuits 51.1 (2015): 303-309.

William Larimer Mellon, Founder
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V/Complementary metal-oxide p

; semiconductors (CMOS)

coefficient |*Logic circuits

& operation || (digital bit, asymmetry)

o 11 ||*Easy: Now available thr h
oalahuay CMOS scaling ow available t Oug
(one device)

(over 10k spins)

Easily Parallelizable and manageable Same |dea also implemented in FPGA
1st replica
:?:i’-?'—'ée King Unit cell useful for both spins
. AT .
Spin 0 0 Spin %@ o and random number generation
array Delay array ﬂ!h\ﬁr&. J i
o S 20 @ (=]
A
C > %:«‘i N spin ] spin || spin
.‘<“ unit [ wnit [P unit ‘ % i'
i M-th replica 1? “_ "_ 3 Y
Item This work \/ wit [ it [ unit
Spin *SRAM cell T T 3% 0 T3 31
(digital bit) spin || spin [ spin 4
Interaction ||* SRAM cell (digital bit) unit [ wunit [T unit —— >

Scalability ||*Easy: Hitachi CMOS Hitachi CMOS
o1lity y
(it glup) digitﬂ(‘) IF can be used Annealer [15], [26] | Annealer [16], [26]
. *CMOS circuit : :
Annealing |* 1 o eration) Maximum number of spins 61,952 6,400
Operating [[*Room temperature Type of coupling King graph King graph
condition | (500K Number of couplings 0.37 million 0.4 million
Computation not mentioned 8-bit fixed point
Implementation ASIC FPGA
1. Yamaoka, Masanao, et al. "A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing."
CarﬁeginglJﬁ%mfyashl, and Masanao Yamaoka. "An Ising computer based on simulated quantum annealing by path integral Monte
arlo method." 26 C P D

Teppe

rimer Mellon, Founder
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https://annealing-cloud.com/en/about/cmos-annealing-machine.html

N

%4

; Playing with Hitachi’'s CMOS

Let’s go to this interactive interface of the CMOS device from Hitachi

https://annealing-cloud.com/en/play/ising-editor.html

Carnegie Mellon University
Tepper SChOOl Of BUS'HeSS William Larimer Mellon, Founder 2t Q%P\R



https://annealing-cloud.com/en/play/ising-editor.html

AR

Digital Annealers
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CMOS Implementation of Ising solution method
Fully connected 1024 nodes
16-bit precision vs. 4-bit precision D-Wave

“For obtaining exact solutions of small-size problems,
the SA machine called “Digital Annealer” may be the
fastest so far.”

1. https://arxiv.org/pdf/1806.08815.pdf
2 https: i - t

Carnegie Mellon University =~ ecseeeds
3 Goto, Hayato, Kosuke Tatsumura, and Alexander R. Dixon. "Combinatorial optimization by simulatingzgabae PD

Te p p er S C h 00 | O]c B us | n eSigrcationsﬂ@ﬂpmi%mytwa?ﬁsp%'ﬁgience advances 5.4 (2019): eaav2372.
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https://arxiv.org/pdf/1806.08815.pdf
https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds
https://spectrum.ieee.org/tech-talk/computing/hardware/fujitsus-cmos-digital-annealer-produces-quantum-computer-speeds
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Digital Annealers

2

Algorithm 1 Simulated Annealing (SA) Algorithm 2 The Digital Annealer’s Algorithm
1: for each run do Arbitrary start : 1: initial_state <— an arbitrary state
2:  initialize to random initial state Initial fields not requwed 9+ foreach tun'do
3 for each temperature do to be calculated 3 initialize to initial_state
4 for each MC sweep at this temperature do 4: Eo ffset < O
5 for each varia}?le do Parall . 5:  for each MC step (iteration) do
6: propose a flip allel-trial 6: if due for temperature update, update the temperature
7 if accepted, update the state and effective fBﬂQSt acceptance : for each variable j, in parallel do
g: enfintgfor probability 8: propose a flip using AEj — Eqffget
‘ 9: if accepted, record
10: update the temperature D 10: sid for
11:  end for J/na 11: i ol (i fi d th
19 cod o /‘/e/ m ic : at least one ip acc-epte en
- o) Ls Sy Off. 12 choose one flip uniformly at random amongst them
an Toy, b 7 ’770(/,7 K & update the state and effective fields, in parallel
a/'/-,'e rs 14: Fotriai — 0
g else
16: Etrset < Eoffset T Offset.increase rate
| 7 end if
18: end for
19: end for
1. https://arxiv.org/pdf/1806.08815.pdf
C arne gl e M ell on UIIIV er Slty 2. ?ttps://spect.ru.m.|eee.org/tech-talk/computlng/hardware/fUJl
' sus-cmos-digital-annealer-produces-quantum-computer-s 29 C P D
Tepper School of BUSINESS  wittiam Larimer 58, Founder

CENTER



https://arxiv.org/pdf/1806.08815.pdf

A q
4 A '
Parallel Tempering

2

Algorithm 3 Parallel Tempering with Isoenergetic Cluster Moves

Algorithm 1 Simulated Annealing (SA) (PT+ICM)

1: for each run do 1: initialize all replicas with random initial states

2 initialize to random initial state 2: for each MC sweep do

3 for each temperature do 3:  for each replica, for each variable do

4 for each MC sweep at this temperature do 4: propose a flip

5: for each variable do b if accepted, update the state and effective fields

6: propose a flip 6: end for

7 if accepted, update the state and effective fields 7:  for each pair of sequential replicas do

8: end for 8: propose a replica exchange

9: end for 9: if accepted, swap the temperatures between the replicas
10: update the temperature 10:  end for
11:  end for 11:  perform ICM update, swapping the states of a cluster of variables that
12: end for have opposite states in the two replicas; update the states and the effective

fields for both replicas
12: end for

e Instead of having a single state you have several replicas
Then the flips can be done among replicas
e |t can be implemented in the Digital Annealer

e Additionally: There can be cluster updates (flip more than one spin if they are “connected”)
o  Similar to Anil’s intuition on the Swendsen-Wang Algorithm

1. https://arxiv.org/pdf/1806.08815.pdf
. . . 2. https://spectrum.ieee.org/tech-talk/computing/hardware/fuji
Carnegie Mellon University o pee ? o )
tsus-cmos-digital-annealer-produces-quantum-computer-s 30 C P D

Tepper School of BUSINESS  wittiam Larimer 58, Founder
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https://en.wikipedia.org/wiki/Swendsen%E2%80%93Wang_algorithm
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; Parallel Tempering

_—

Fully connected instances

Sparse instances
2D-Bimodal 2D-Sparse

10*‘E - i ‘
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E N N
10-2L ©Q DA (0th)  ® D DA (80th) |; e DA Digital Annealer
_fHE B SA (50th) B € SA (80th) ] . .
1073 &% PT (50th) &0 PT (80th) |3 e SASimulated Annealmg
of PTDA (50th) PTDA (80th) |} e PT(+ICM) Parallel Tempering
)7 ! I L L 1 1 1 I 1 .
64 144 256 400 576 676 784 900 1024 (+lsoenergetic Cluster Moves)
N e PTDA Parallel Tempering Digital Annealer

Digital Annealer Wins

Carnegie Mellon University

Tepper School of Business

Parallel Tempering Wins

1. https://arxiv.or f/1 . 15.pdf
S. V. Isakov, I. N. Zintchenko, T. F. Rennow, and M. Troyer,

Optimized simulated annealing for Ising spin glasses,
Comput. Phys. Commun. 192, 265 (2015)

31 CAPD

William Larimer Mellon, Founder
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Carnegie Mellon University

Tepper School of Business
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FUJITSU

Quantum Computing Challenge Series

Wllllam Larimer Mellon, Founder

$11,500
Purse

Quantum Computing Challenge Series - Max Cut Marathon Match

=
o
=]

Ended Apr 04  Marathon Match

Quantum Computing Learning Challenge #3 - Max Cut $250

o

&
]
=]

Ended Aug04 Python DataScience Other

Quantum Computing Learning Challenge 2 - Scheduling $250

=

o

=]
o

Ended Feb 28 Python  DataScience  Other

Quantum Computing Learning Challenge #1 - Solve Sudoku Instantly $250

-

o

=]
]

Ended Feb 14  Algorithm  Python  Data Science  +1

https://arxiv.org/pdf/1806.08815.pdf
https: trum.i .org/tech-tal ting/hardware/fuji
tsus-cmos-digital-annealer-pr ntum-computer-:

peeds
https://tc3-japan.github.io/DA _tutorial/index.html

32 CAPD
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Digital Annealer v Application-specific p
integrated circuit v FPGA v GPU

Fuyjitsu Digital Hitachi CMOS Hitachi CMOS EDOIA acceless
Annealer [25] Annealer [15], [26] | Annealer [16], [26] accelerator
Maximum number of spins 8192 61,952 6,400 32,768
Type of coupling Total coupling King graph King graph Total Coupling
Number of couplings 67 million 0.37 million 0.4 million 1 billion
Computation 64-bit fixed-point not mentioned 8-bit fixed point 32-bit floating-point
Implementation ASIC ASIC FPGA 2-FPGA connected via fiber

Category

Speed-up
Accuracy
Problem size

Power consumption
Power-efficiency
Availability
Programmability
Compilation time
Design time

1. Waidyasooriya, Hasitha Muthumala, and Masanori Hariyama. "A GPU-Based Quantum Annealing Simulator for Fully-Connected

Ising Models Utilizing Spatial and Temporal Parallelism."

2. Waidyasooriya, H.M., Hariyama, M., Miyama, M.J. et al. OpenCL-based design of an FPGA accelerator for quantum annealing

Carnegie Mellon Unlvers1tymu|at.on

Waldyaso a, Hasitha Muthumala, and Masanori Hariyama. “Highly-Parallel FPGA Accelerator for Slmulated%antl.€ PD

Te p p e r SC h OOl Of E USrlrQE@ﬁ William Larimer Mellon, Founder
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Alternatives available

Calculation method

Maximum number of bits
Coefficient parameter

Combined graph

Total number of
combined conversion

bits
API endpoint

Carnegie Mellon University

Tepper School of Business

Fixstars

Optigan

GPU

Over

100,000

Digital (32
/ 64bit)

Fully

combined

65,536

Fixstars

D-Wave
2000Q

Quantum

annealing

2,048
(16x16x8)

Analog
(about
5bit)

Chimera

graph

64

D-Wave
Cloud

Hitachi
CMOS

Annealing

Digital

circuit
61,952

(352x176)

Digital (3bit)

King Graph

176

Annealing

Cloud Web

William Larimer Mellon, Founder

Fujitsu
Digital

Annealer

Digital

circuit

1,024/
8,192

Digital
(16/64
bit)

Fully

combined

1,024/
8,192

DA Cloud

Toshiba
SBM

GPU
10.000

Digital
(32bit)

Fully

combined

1,000

AWS

34 CAPD
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; Playing with Fixstars’s Optigan

Let’s go to this interactive interface of the GPU implementation from
Fixstars Optigan

https://quantum.fixstars.com/product/demo#demoModal

Translated version (but you cannot run it)

https://colab.research.google.com/github/bernalde/QulP/blob/master/noteb
00oks/Notebook%208%20-%20Amplify%20Tutorials.ipynb

Carnegie Mellon University
Teppe r SChOOl Of BUS'HeSS William Larimer Mellon, Founder 35 g%)\/[).



https://quantum.fixstars.com/product/demo#demoModal
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%208%20-%20Amplify%20Tutorials.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%208%20-%20Amplify%20Tutorials.ipynb
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: A
/V/Closing Remarks

/

o Non-linear Integer Programs model a variety of real world
problems from many domains

o Solving them classically has limitations, especially with
non-convex objectives, constrained integer variables

o We explored non-classical approaches based on
QUBO/Ising

o GAMA is a general purpose heuristic that utilizes Graver
Test-Set

o There are a variety of options to solve Ising model

Carnegie Mellon University
Teppe r SChOOl Of BUS'HeSS William Larimer Mellon, Founder 36 ggipﬁl[z




